Differential Equations ( Final Exam 

By Shun-Feng Su

July 13, 2019
1. True/False. Be sure to justify your answers. 5 points each.

(1) If 
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 is an integrating factor of a differential equation, then k
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 is also an integrating factor of the differential equation for any non-zero constant k. 

(2) The supposition principle is feasible for any linear differential equations no matter what order the differential equations have.

(3) Suppose that f(t) is integrable for t >0 and a>0. Then 
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(4) Suppose that 
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(5) The power series expansion of a function about a fixed point is unique.

(6) If 
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(7) If 
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 is a singular point of 
[image: image20.wmf]0

)

(

)

(

)

(

=

+

¢

+

¢

¢

y

x

R

y

x

Q

y

x

P

.

(8) If 
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 have singular points, then it is impossible to solve it by the power series method.
(9) If the different equation 
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 can be solved by the power series method, then we can always find two linearly independent power series solutions.
(10) The Frobenius solution of 
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 is valid in the entire analytic region of 
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2. Short Answers. 5 points each.

(1) Consider an initial value problem 
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(2) Let 
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(3) Given any three functions 
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(4) What is the definition for n functions, 
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 to be linearly independent? 
(5) Find the convergent interval for 
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(6) Find the convergent radius for the Taylor expansion series of 
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 about x=2.
(7) Rewrite
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 into one summation.

(8) In which region is the power series solution of 
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 valid?

(9) Define all singular points (regular or irregular) for 
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(10) While using the Frobenius series in solving a differential equation, why we need to assume that the leading coefficient 
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 should be not zero?

3. (10 points) Find the Taylor expansion for 
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4. (15 points) Find the first five terms of the power series solution for 
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5. (15 points) Find the power series solution in powers of x(1 (i.e., 
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6. (15 points) Find the first five terms of the power series solution for 
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 through the recurrence relation.  
7. (15 points) Solve the differential equation 
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 by the method of Frobenius (at least five nonzero terms for series).

8. (20 points)Solve the differential equation 
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 by the method of Frobenius (at least five nonzero terms for series).
9. (20 points)Solve 
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 by the method of Frobenius (at least five nonzero terms for series). 
The total score is 210. Do your best and good luck.
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