Engineering Mathematics ( Exam III

By Shun-Feng Su

Dec. 28, 2008
1. Short Answers. 5 points each.
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(14) Express the function shown in the following figure in terms of the Heaviside functions.
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(15) Find the Laplace transform of the above function.

(16) Evaluate 
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(17) Find the convolution of t
[image: image29.wmf]t

e

2

-

 and 
[image: image30.wmf](2)

t

d

-

.
(18) Please give a function whose Laplace transform does not exist.

(19) Suppose that both f(t) and g(t) are piecewise continuous on [0, k] for every k >0 and also both are 
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(20) Suppose that f(t) is continuous for t >0 and is 
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2. True/False. Be sure to justify your answers. 5 points each.
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(2) Since a square wave function has an infinite number of discontinuities, it is not a piecewise continuous function. However, its Laplace transform still exists.

(3) If the Laplace transform of f(t) exists, then 
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(4) Suppose that the Laplace transform of f(t) exists as F(s). Let a > 0. Then £(
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(10) Suppose that f(t) is integrable for t >0. Let a>0. Then 
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3.  (10 points) Find the solution for 
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4.  (10 points) Find the inverse Laplace transform of 
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, where k and p are constants.

5. (15 points) Find the Laplace transform of the following function. 

Hint: You may use the function in problem (四) to construct the function.
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Fig. 112. Staircase function




6. (15 points) Find the Laplace transform of the half-wave rectification of 
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7. (15 points) Suppose that f(t) is piecewise continuous on [0, k] for every  k >0 and also is 
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, where F(s) is the Laplace transform of f(t). 

8.  (10 points) Find f(t) in 
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9. (15 points) Solve 
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10. (20 points) Solve the following differential equation system
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The total score is 260. Do your best and good luck.
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