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Algorithms for Constrained
Optimization

22.1 INTRODUCTION

In Part IT we discussed algorithms for solving unconstrained optimization problems.
This chapter is devoted to a treatment of some simple algorithms for solving special
constrained optimization problems. The methods here build on those of Part II.

We begin our presentation in the next section with a discussion of projected
methods, including a treatment of projected gradient methods for problems with linear
equality constraints. We then consider penalty methods. This chapter is intended
as an introduction to some basic ideas underlying methods for solving constrained

optimization problems. For an in-depth coverage of the subject, we refer the reader
to [8].

22.2 PROJECTIONS

The optimization algorithms considered in Part IT'have the general form
(bt — p(k) 4 ard®

where d*) is typically a function of V f(x®). The value of 2z(*
to lie inside any particular set. Such an algorithm is not immedi
solving constrained optimization problems in which the decision
to lie within a prespecified constraint set.

Consider the optimization problem

is not constrained
ately applicable to
variable is required

minimize f(x)




440 ALGORITHMS FOR CONSTRAINED OPTIMIZATION

subject to z €.

If we use the algorithm above to solve this constrained problem, the iterates x(*)
may not satisfy the constraints. Therefore, we need to modify the algorithms to
take into account the presence of the constraints. A simple modification involves the
introduction of a projection. The idea is as follows. If z(¥) + ay, d™ isin Q, then
we set z(#+1) = 2(®) 4 o, d® as usual. If, on the other hand, z*) + o, d® is not
in , then we “project” it back into  before setting (*+1)

To illustrate the projection method, consider the case where the constraint set
Q C R" is given by

Q={zx:l;<z;<u;, i=1,...,n}.
In this case, (2 is a “box” in R™. Given a point € R, define y = II[z] € R" by

U if X; > U;
yi=4 = ifl; <z <wy
li if z; < li

The point IT[x] is called the projection of x onto 2. Note that II[x] is actually
the “closest” point in {2 to . Using the projection operator II, we can modify the
previous unconstrained algorithm as follows:

et = I[z® + 0, d®)].

Note that the iterates £(*) now all lie inside Q. We call the above algorithm a
projected algorithm.
In the more general case, we can define the projection onto (:

II[z] = argmin ||z — z||.
zZ€N

In this case, II[z] is again the “closest” point in {2 to . This projection operator
is well defined only for certain types of constraint sets—for example, closed convex
sets. For some sets {2, the “arg min” above is not well defined. If the projection IT
is well defined, we can similarly apply the projected algorithm

z* ) = II[z® + 0, d®)].

In some cases, there is a formula for computing II[x]. For example, if Q2 is a
“box” constraint set as described above, then the formula given previously can be
used. Another example is where (2 is a linear variety (plane), which is discussed in the
next section. In general, even if the projection IT is well defined, the computation of
II[x] given & may not be easy. Often, the projection II[z] may have to be computed
numerically. However, the numerical computation of II[x] itself entails solving an
optimization algorithm. Indeed, the computation of II[x] may be as difficult as the
original optimization problem, as is the case in the following example:

minimize [lz||?
subject to z €N
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Note that the solution to the problem in this case can be written as II[0]. Therefore, if

0 ¢ 2, the computation of a projection is equivalent to solving the given optimization
problem.

22.3 PROJECTED GRADIENT METHODS

In this section, we consider optimization problems of the form

minimize f(x)
subject to Az = b,

where f : R® - R, A € R™*", m < n, rank A = m, b € R™. We assume
throughout that f € C!. In the above problem, the constraint set is {) — {z: Az =
b}. The specific structure of the constraint set allows us to compute the projection
operator II using the orthogonal projector (see Section 3.3). Specifically, II[z] can
be defined using the orthogonal projector matrix P given by

P=1I,-ATAAT) 14
(see Example 12.4). Two important properties of the orthogonal projector P that we
use in this section are (see Theorem 3.5):
1. P=P7T;and
2. PP=P.

Another property of the orthogonal projector that we need in our discussion is
given in the following lemma.

Lemma 22.1 Let v € ;l‘K" Then, Pv = 0 if and only if v € R(AT). In other
words, N(P) = R(A"). Moreover, Av = 0 if and only if v € R(P), that is,
N(A) = R(P). m]

Proof. =-: We have

Py = (I,-AT(AAT)"1A)p
= v—-AT(4AT) ! Av.
If Pv = 0, then
v=AT(AAT) 1Ay
and hence v € R(AT).
<=: Suppose there exists u € R™ such that v = ATw. Then,

Pv = (I,-AT(AAT)'A)ATy
= ATu—- AT(AAT) 1447y
0.
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Hence, we have proved that N'(P) = R(AT).
Using a similar argument as above, we can show that N'(A) = R(P). [ |

Recall that in unconstrained optimization, the first-order necessary condition for
a point * to be a local minimizer is V f(z*) = 0 (see Section 6.2). In optimization
problems with equality constraints, the Lagrange condition plays the role of the first-
order necessary condition (see Section 19.4). When the constraint set takes the form
{z : Ax = b}, the Lagrange condition can be written as PV f(xz*) = 0, as stated
in the following proposition.

Proposition 22.1 Let z* € R™ be a feasible point. Then, PV f(x*) = 0 ifand only
if x* satisfies the Lagrange condition. O

Proof. By Lemma 22.1, PV f(z*) = 0 if and only if we have Vf(z*) € R(AT).
This is equivalent to the condition that there exists A* € R™ such that V f(z*) +
AT\ = 0, which, together with the feasibility equation Ax = b, constitutes the
Lagrange condition. E

In the remainder of this section, we discuss the projection method applied specif-
ically to the gradient algorithm (see Chapter 8). Recall that the vector —V f(x)
points in the direction of maximum rate of decrease of f at x. This was the
basis for gradient methods for unconstrained optimization, which have the form
D) = x(*) — 0, Vf(x*)), where oy is the step size. The choice of the step
size oy, depends on the particular gradient algorithm. For example, recall that in the
steepest descent algorithm, o, = argmin~, f(z® — oV f(z®)).

The projected version of the gradient algorithm has the form

2+ = T[z®) — o, V(™).

We refer to the above as the projected gradient algorithm. It turns out that we can
express the projection IT in terms of the matrix P as follows:

H[z® -, Vf(z®)] = 2® — 0, PV f(z®),

assuming (¥ € Q. Although the above formula can be derived algebraically
(see Exercise 22.1), it is more insightful to derive the formula using a geometric
argument, as follows. In our constrained optimization problem, the vector —V f(x)
is not necessarily a feasible direction. In other words, if (*) is a feasible point
and we apply the algorithm z(*+1) = £(*) — o, V f(x(¥), then 2(*+1) need not
be feasible. This problem can be overcome by replacing —V f(z(*)) by a vector
that points in a feasible direction. Note that the set of feasible directions is simply
the nullspace A/(A) of the matrix A. Therefore, we should first project the vector
—V f(x) onto N(A). This projection is equivalent to multiplication by the matrix
P. In summary, in the projection gradient algorithm, we update x*) according to

the equation
g+ = g0 _ o, PV f(2®).

The projected gradient algorithm has the following property.
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Proposition 22.2 In a projected gradient algorithm, if () s feasible, then each
z(®) s feasible, that is, for each k > 0, Az*) = p. ]

Proof. We proceed by induction. The result holds for k = 0 by assumption. Suppose
now that Az(*) = b. We now show that Az(k+1) — b. To show this, first observe
that PV f(z(®)) € A'(A). Therefore,

Az = g™ _ ar PV f(z®))
= Az — ar APV f(z™®)
= b,

which completes the proof. [ ]

The projected gradient algorithm updates z*) in the direction of -PVf (w(’“)).
This vector points in the direction of maximum rate of decrease of f at (k) along
the surface defined by Az = b, as described in the following argument. Let = be
any feasible point and d a feasible direction such that |ld|| = 1. The rate of increase
of f at  in the direction d is (V f(x), d). Next, we note that because d is a feasible
direction, it lies in \V(A) and hence by Lemma 22.1, we have d € R(P) = R(PT).
So, there exists v such that d = Puv. Hence,

(Vi(z),d) = (Vf(x), PTv) = (PVf(z),v).

By the Cauchy-Schwarz inequality,
(PVf(z),v) < [PV f(z)|[lv]l

with equality if and only if the direction of v is parallel with the direction of PV f(z).
Therefore, the vector — PV f(z) points in the direction of maximum rate of decrease
of f at & among all feasible directions.

Eollowing the discussion in Chapter 8 for gradient methods in unconstrained
optimization, we suggest the following gradient method for our constrained problem.
Suppose we have a starting point (9 which we assume is feasible, that is, Az(®) =
b. Consider the point z = z(®) — o PV f (z(?), where a € R. As usual, the scalar
a is called the step size. By the above discussion, z is also a feasible point. Using a
Taylor series expansion of f about w(o), and the fact that P = P? = PTP, we get

[@® —aPVia?) = f@?)-aV@®)TPVi@®)+ o)
1@®) = allPYF( )| + oa).

Thus, if PVf (@) # 0, that is, z(®) does not satisfy the Lagrange condition,
then we can choose an o sufficiently small such that f(z) < f(z(?)), which means
that 2 = 2(0) — 4PV f(2() is an improvement over z(©). This is the basis for
the projected gradient algorithm z(¥+1) = z(*) _ g, PV f(z®), where the initial
point z(© satisfies Az(© = b, and oy, is some step size. As for unconstrained
gradient methods, the choice of ay, determines the behavior of the algorithm. For
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small step sizes, the algorithm progresses slowly, while large step sizes may reS}Jlt in
a zig-zagging path. A well-known variant of the projected gradient algorithm is the
projected steepest descent algorithm, where ay, is given by

ay = argmin f(z® — aPVf(x®)).
a>0

The following theorem states that the projected steepest descent algorithm i§ a
descent algorithm, in the sense that at each step the value of the objective function
decreases.

Theorem 22.1 If {:1:(’“) } is the sequence of points generated by the projected steepest
descent algorithm and if PV f(z(®)) # 0, then f(z*+1) < f(z®). ]

Proof. First, recall that

z*t) = £*) _ o) PV f(2®)),
where o > 0 is the minimizer of

¢e(@) = f(@® — aPVf(zM))

over all a > 0. Thus, for o > 0, we have

dr(ax) < dr(a).
By the chain rule,
#0) = 2e)
= -Vf@@® - 0PVi(®)TPV ™)
= —Via®)TPVf®).

Using the fact that P = P? = PTP, we get
$:(0) = =V (@®)TPTPV () = - PV (™) <0,

because PV f(z(¥)) # 0 by assumption. Thus, there exists @ > 0 such that
ox(0) > ¢r () for all a € (0, @]. Hence,

F@® ) = gp () < gr(@) < ¢1(0) = f(&™)
and the proof of the theorem is completed. |

In the above theorem we needed the assumption that PV f(z(F)) # 0 to provke that
the algorithm possesses the descent property. If for some k, we have PY f (:1:( )) =
0, then by Proposition 22.1 the point x(*) satisfies the Lagrange condmon.. Th?S
condition can be used as a stopping criterion for the algorithm. Note that in t.hlS
case, z(F*1) = g(*) For the case where f is a convex function, the condition
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PVf(xz®) = 0 is, in fact, equivalent to (¥) being a global minimizer of f over
the constraint set {x : Az = b}. We show this in the following proposition.

Proposition 22.3 The point z* € R* is a global minimizer of a convex function f
over {x : Az = b} if and only if PV f(z*) = 0. O

Proof. We first write h(z) = Az — b. Then, the constraints can be written as
h(z) = 0, and the problem is of the form considered in previous chapters. Note that
Dh(z) = A. Hence, z* € R" is a global minimizer of [ if and only if the Lagrange
condition holds (see Theorem 21.7). By Proposition 22.1, this is true if and only if
PV f(z*) = 0, and the proof is completed. [ |

For an application of the projected steepest descent algorithm to minimum fuel
and minimum amplitude control problems in linear discrete systems, see [57].

22.4 PENALTY METHODS

In this section, we consider constrained optimization problems of the form

minimize f(x)

subjectto  gi(x) <0
g2(z) <0
gp(w) S 0:

where f : R* - R, g; : R* - R i =1,... ,p. Considering only inequality
constraints is not restrictive, because an equality constraint of the form h(z) =0is
equivalent to the inequality constraint || h(z)||> < 0 (however, see Exercise 20.21 for
a caveat). We now discuss a method for solving the above constrained optimization
problem using techniques from unconstrained optimization. Specifically, we approx-
imate the constrained optimization problem above by an unconstrained optimization
problem
minimize f(x) + vP(x),

where v € R is a positive constant, and P : R* — R is a given function. We then
solve the associated unconstrained optimization problem, and use the solution as an
approximation to the minimizer of the original problem. The constant 7y is called the
Ppenalty parameter, and the function P is called the penalty function. Formally, we
define a penalty function as follows.

Definition 22.1 A function P : R* — R is called a penalty function for the above
constrained optimization problem if it satisfies the following three conditions:

1. Pis continuous;




