Engineering Mathematics ( Exam II

By Shun-Feng Su

July 8, 2019
Note that in the following 
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 are all supposed to be continuous in the considered interval for all problems.

1. Find the general solution for differential equations:  10 points each.
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 are solutions of the associated homogeneous D.E.
(8). 
[image: image15.wmf]912sec(3)

yyx

¢¢

+=

;

(9). 
[image: image16.wmf](3)

320

yyy

¢¢

-+=

;

(10). 
[image: image17.wmf](4)

cos

xx

yyeex

-

-=++

;
2. Short Answers. Evaluating processes are not required. 5 points each.

(1) Please specify the conditions under which the initial value problem 
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 has a unique solution.

(2) Let 
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 is the Wronskian for 
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(3) What is the definition for k functions being linearly dependent?

(4) Write 
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 in a complex form; i.e. a+bi.

(5) Please write those n-1 extra equations for solving an n-th order differential equation by the method of variation of parameters.
(6) Please specify all possible functions that can satisfy an Euler equation, 
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, where A, B, and C are constants.
(7) Let 
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(8) For an Euler equation, when 
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3. True/False. Be sure to justify your answers. 5 points each.

(1) Suppose that p(x), q(x) and f(x) are all continuous for all 
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, where R is the domain of all real numbers. Then the initial value problem 
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 has a unique solution in the entire R. 
(2) For a second order linear differential equation, since there are two arbitrary constants and the differential equation is linear, if two linearly independent solutions can be found, the general solution is a linear combination of these two solutions.
(3) If the Wronskain of any two functions is not zero for some 
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 in the considered interval, then these two functions are definitely linearly independent.
(4) Let 
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 on I. Then a linear combination of 
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(5) If the Wronskian of 
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(7) Let 
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(8) Let 
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4.  (20 points) Let 
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5. (20 points) Prove that 
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6. (10 points) Let 
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7.  (10 points) Solve the initial value problem 
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The total score is 240. Do your best and good luck.

_1130769629.unknown

_1130771041.unknown

_1130825469.unknown

_1351582011.unknown

_1351582046.unknown

_1351516384.unknown

_1351580589.unknown

_1130826083.unknown

_1351511477.unknown

_1130826067.unknown

_1130823181.unknown

_1130824282.unknown

_1130824496.unknown

_1130824627.unknown

_1130824293.unknown

_1130824303.unknown

_1130824232.unknown

_1130824267.unknown

_1130823195.unknown

_1130822904.unknown

_1130823157.unknown

_1130822761.unknown

_1130770130.unknown

_1130770783.unknown

_1130770931.unknown

_1130770609.unknown

_1130769737.unknown

_1130769948.unknown

_1130769682.unknown

_1035962342.unknown

_1099205976.unknown

_1099208025.unknown

_1099208249.unknown

_1130769575.unknown

_1099208171.unknown

_1099208239.unknown

_1099208158.unknown

_1099206015.unknown

_1099207994.unknown

_1099205989.unknown

_1067930674.unknown

_1099205961.unknown

_1035963561.unknown

_1067928810.unknown

_1067930664.unknown

_1035963571.unknown

_1035963007.unknown

_1004818241.unknown

_1004818339.unknown

_1004818376.unknown

_1005035463.unknown

_1005036118.unknown

_1005036128.unknown

_1004818397.unknown

_1004818366.unknown

_1004818316.unknown

_1004817761.unknown

_1004817782.unknown

_1004818210.unknown

_1004818172.unknown

_1004817770.unknown

_1004816228.unknown

_1004817733.unknown

_1004815597.unknown

_1004816164.unknown

