Midterm for Introduction to Optimization
By Shun-Feng Su

April 15, 2022
General Guideline:

1. There are 13 questions in this exam. Please do all questions. The total score is 400. Do your best and good luck.

2. Your answers can be written either in English or in Chinese.
3. Please give proper definition for the symbols you use.
4. Write all answers on the blank place immediately following the questions. If there is no enough space, continue your answers on the back of the sheet with proper indications. 
5. Partial grade may be given. Write down any derivation to demonstrate your knowledge in case your answer is incorrect.

6. If the problem is infeasible, please state why it is infeasible.

Your Name:                        
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	Problem Number
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	I. (25pts)
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	III. (10pts)
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I.  Define 
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 and let d=
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(a) (10 points) Please find the directional derivative of f on the direction d. 
(b) (5 points) Also find the rate of increase of f at the point 
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 on the direction d. 
(c) (10 points) Find the gradient and the Hessian matrix of f at the point 
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II. Consider the problem 
Minimize 
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Subject to 
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(a) (10 points) Please check whether the following points satisfy the FONC: [1, 2]T, [0.5, 2]T, [0, 2]T, and [(1, 1]T. 
(b) (10 points) Whether the directional derivative of f at [0, 1]T on the direction [2, 1]T exists? If yes, find it; if not, prove it. 

(c) (5 points) Which directions [(1, 1]T, [1, 1]T, [1, (1]T or [(1, (1]T are feasible directions for the point [1, 1]T?
III. (10 points) As shown in the following figure, in Golden section search, by choosing the intermediate points so that a1-a0=b0-b1=((b0-a0) where (<1/2. The search can repeat the above process by using the same ( and make one intermediate point coincide with the one already used in the previous search. Please show that in this case (=
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IV. Let 
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(a) (10 points) Perform 3 iterations of search by using the Golden section method.
(b) (5 points) If the required accuracy must be within 0.00001, then how many iterations are needed when using the Golden section method?
(c) (10 points) Perform 3 iterations of search by using the Fibonacci method with (=0.01.

(d) (5 points) If the required accuracy must be within 0.00001, then how many iterations are needed when using the Fibonacci method with (=0.01?
V.  Consider the minimization problem for 
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(a) (10 points) Perform Newton’s method for 3 iterations with 
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(b) (10 points) Repeat (a) with 
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(c) (10 points) Given 
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VI. (15 points) If 
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 is a steepest descent sequence for a given function, please prove that for each k, (x(k+1)(x(k)) is orthogonal to (x(k+2)(x(k+1)), where orthogonal means <(x(k+1)(x(k)), (x(k+2)(x(k+1))>=0 
VII. Consider 
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(a) (15 points) Use Newton’s method for 2 iterations with 
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(b) (15 points) Repeat (a) if possible, apply the Levenberg-Marquardt modification. 

VIII. Let 
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(a)  (5 points) Express 
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(b)  (15 points) Find the minimizer of f using the conjugate gradient algorithm with the initial point 
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IX. (25 points) Consider a quadratic function as f(x)=1/2 xTQx-bTx. In the conjugation direction algorithm, given a starting point x(0) and Q-conjugate vector d(0), d(1), …, d(n-1), please prove g(k+1)Td(i) =0 for all 0(k(n-1 and 0(i(k, where g(k) = (f(x(k)).
X. Suppose we want to minimize
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(a)  (20 points) Use the rank one algorithm to find the solution with 
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(b)  (20 points) Use the DFP algorithm to find the solution with 
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(c)  (20 points) Use the BFGS algorithm to find the solution with 
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XI. (20 points) For the rank one algorithm applied to the quadratic with Hessian 
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, and g is the gradient of the objective function.

XII. Short Answers. (5 pts each)

1. Let [image: image34.wmf]n
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 and 
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. If  is a local minimizer of g over ( and is an interior point of (, then from FONC, what can we conclude?
ANS: 
[image: image36.wmf](*)0

gx

Ñ=
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 is a local minimizer of g over (, then for any feasible direction w at [image: image40.wmf]x
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ANS: wT(2g(x*) w(0 and 
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3. When the steepest descent method is applied to a quadratic function 
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, where Q is a symmetric positive definite matrix, how many steps it needs to converge to the minimizer in general?
ANS: converge asymptotically. 
4. Consider a quadratic function f：
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. If the Quasi-Newton method is applied, how many iterations does it need to reach the minimizer?
ANS: 1
5. When the Fibonacci search method is used, please specify how we choose the partition ratio (.
ANS: (k=1-FN-k+1/FN-k+2 and FN is the Fibonacci sequence
6. Since the commonly used search algorithm in learning is the gradient descent algorithm, please specify the algorithm.
ANS: x(k+1)=x(k)((k(f(x(k))

7. When a gradient descent algorithm is used, please specify the effects when a small step size is used.
ANS: need more time to converge and may be stuck on local minima.
8. Which lemma is used to convert the Hestenes-Stiefel formula to the Polak-Ribiere formula?
ANS: 
9. What is the main difference between the Newton method and the quasi-Newton method?
ANS: the quasi-Newton method use an approximation to H-1.
10. In all quasi-Newton methods, which property the methods need to satisfy?
ANS: g(k+1)Td(i) =0
11. What is the difference between the DFP algorithm and the rank one algorithm?
ANS: DFP is rank 2 and can preserve the positive definite on H.
12. What is the difference between the DFP algorithm and the BFGS algorithm? 
ANS: DFP directly to find H-1 and BFGS is to find H and use a lemma to find H-1.
XIII. True/False. Be sure to justify your answer. (5 pts each)
1. If a point is a global minimizer for an objective function defined over (, then the gradient of this function at this point is always equal to zero.
ANS: F  Why: When there are constraints, the global minimizer may be located on the boundary.
2. The Fibonacci search method is always more effective than the golden section search method.
ANS:  T  Why: The Fibonacci search method is to consider optimization.
3. If 
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 is a steepest descent search sequence for a given function f：
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ANS:  T   Why: Due to optimal search, when take derivative, it results in decent property.
4. If 
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 is a gradient descent sequence for a given function f：
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ANS:  F   Why: it does not have optimal search.
5. Consider a function f：[image: image52.wmf]W®
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ANS:  T   Why: It results in 
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6. The Hessian of any objective function f(x) is always a symmetric matrix.
ANS:  T   Why: take derivatives can be exchanged.
7. Consider the general iterative algorithm, 
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ANS:  F   Why: not 
[image: image67.wmf](1)

()

k

fx

+

Ñ

 because it is not gradient approach
8. In a Quasi-Newton algorithm for a quadratic function, the resultant search direction are always Q-conjugate.
ANS:  T   Why: By theorem.
9. DFP can always result in the positive definiteness of Hk in the calculation process.

ANS:  F   Why: when initial is not positive, it is not.
10. In general cases, when the line search is known to be inaccurate, the Polak-Ribiere formula is recommended.

ANS:  F   Why:  Hestenes-Stiefel is recommended
( END (
Supplement formulas for Nonlinear programming Midterm
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1. In Golden section, (=       =0.382.
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3. Basic conjugate direction algorithm: x(k+1)=x(k)+(kd(k) with (k                                    
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conjugate gradient algorithm, d(k+1)=(g(k)+(kd(k) with (k[image: image69.wmf](1)()
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The Hestenes-Stiefel formula: (k     
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The Polak-Ribiere formula: (k
7. The Fletcher-Reeves formula: (k
8. Rank one: 
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9. The DFP update: 
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10. The BFGS algorithm
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