-_—ryen ‘. =l s I-I.. ... . - E - - . - . .
at every iteration. To be specific, let f : R* — R be a function that we wish to

minimize. Iterative algorithms for finding a minimizer of f are of the form

Y

H...m.... 1) — HC.,,.." i ﬁm__...D__“.“...\.
where (%) is a given initial point, and e, > 0 is;chiosen to minimize ox(a) =
flx™ + ad'™). The vector d'*/ is called the search-direction. Note that choice
of a4 involves a one-dimensional minimization. This choice ensures. that, under
appropriate conditions,

F@*) < f(2®).
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1 — .
4 42 xkeD)  x) xk1) X Aco may, for oxmﬂu_o., use the secant method to find ay. In this case, we need the
derivative of ¢, which is
Figure 7.10 Secant method for root finding i (a) = &:&Hﬂ\ AHE + Q%
The above is obtained using the chain rule. Therefore, applying the secant method
of R that minimizes the total squared error between the measured voltages and the for the line search requires the gradient V£, the initial line search point z'*), and
: voltages predicted by the model. the search direction d'*) (see Exercise 7.9). Of course, other one-dimensional search
We derive an algorithm to find the best estimate of R using the secant method. methods may be used for line search (see, e.g., [29] and [64]).
The objective function is: Line search algorithms used in practice are much more involved than the one-

dimensional search methods presented in this chapter. The reason for this stems

F(R) = W (Vi— e~ Rt; vw‘ E.E.H m,w<03_ practical oo:maonmm.onm. First, aoﬁdaanm the value of ay, _“.E.z mxmon_u\

Py minimizes ¢ may be computationally demanding; even worse, the minimizer of

¢ may not even exist. Second, practical experience suggests that it is better to

Hence, we have allocate more computational time on iterating the optimization algorithm rather than
£(R) = MM:U (Vi — e~Rti)em Ry performing exact line searches. These considerations led to the development of

: ) o conditions for terminating line search algorithms that would result in low-accuracy

. line searches while still securing a decrease in the value of the f from one iteration to

The secant algorithm for the problem is: : the next. For more information on practical line search methods, we refer the reader

1
- Ry — Rys to [29, pp. 26401, [34], and [35]".

R = R, — .
K+l k AMMHH Vi — mlww?.vmlm_o?.?. = G\s - mlm_ﬂlurvmlwwlprws.v

n
X MUAS - m|-i&ml5?ﬁ.
=1

EXERCISES

7.1 Suppose that we have a unimodal function over the interval [5,8]. Give an

N example of a desired final uncertainty range where the Golden Section method
For further reading on the secant method, see [20]. requires at least 4 iterations, whereas the Fibonacci method requires only 3. You
may choose an arbitrarily small value of ¢ for the Fibonacci method.
7.5 REMARKS ON LINE SEARCH METHODS 7.2 Let f(z) = 2 + 4 cosz, z € R We wish to find the minimizer 2™ of f over the
. o s == interval 1, 2]. (Calculator users: Note that in cos z, the argument z is in radians).

' One-dimensional search methods play an important role in multidimensional opti-
mization problems. In particular, iterative algorithms for solving such optimization I'We thank Dennis M. Goodman for furnishing us with references [34] and [35].
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/> a. _Plot f(z) versus T over the interval [1, 2].
L a

P b. Use the Golden Section method to locate z* to within an uncertainty of 0.2.

- 77

\ e

= Display all intermediate steps using a table as follows:

Iterationk ar br f(ax) f(bx) New uncertainty interval

? ? 2.7
2 7 ? & ? (2,7

n Repeat part b using the Fibonacci method, with € = 0.05. Display all interme-
" diate steps using a table as follows:

w

f(ax) f(bx) New uncertainty interval

(.7
(2.7

Tterationk pr  ar bk

-~

AR T S S
% B i &

2

4_ d. Apply Newton’s method, using the same number of iterations as in part b, with
>

o z©® =1.

7.3 Let f(x) = 8¢!™% + 7log(z), where log(-) represents the natural logarithm

function.

a. Use MATLAB to plot f(z) versus z over the interval [1, 2], and verify that f

is unimodal over [1, 2].

b. Write a simple MATLAB routine to implement the Golden mwo.aon method
that locates the minimizer of f over [1,2] to within an uncertainty of 0.23.

Display all intermediate steps using a table as in Exercise 7.2.

c. Repeat part b using the Fibonacci method, with ¢ = 0.05. Display all interme-

diate steps using a table as in Exercise 7.2.

7.4 Suppose that p1,.
Show that foreachk = 1,...,N,0 < py < 1/2, and foreach k = 1,...,N -1,

1P
pr+1 =1 S

..,pn are the values used in the Fibonacci search method.
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7.5 Show that if Fy, F1,. .. is the Fibonacci sequence, then foreach k = 2,3, .. .,

Fy oFpy1 — Fp1 Fy = (-1)F.

7.6 Show that the Fibonacci sequence can be calculated using the formula

n+l n+1
ool 1++5 1-v5

RV 2 2

7.7 Suppose that we have an efficient way of calculating exponentials. Based on
this, use Newton’s method to devise a method to approximate log(2) (where log(:)
is the natural logarithm function). Use an initial point of £(®) = 1, and perform 2
iterations.

7.8 The objective of this exercise is to implement the secant method using MATLAB.

a. Write a simple MATLAB routine to implement the secant method to locate the
root of the equation g(z) = 0. For the stopping criterion, use the condition
|z+1) — 2*)| < |z(¥)|e, where ¢ > 0 is a given constant.

b. Let g(z) = (2z — 1) + 4(4 — 1024z)*. Find the root of g(z) = 0 using the
secant method with (=1 = 0, z(® = 1, and e = 10~5. Also determine the
value of g at the obtained solution.

7.9 Write a MATLAB fiinction that implements a line search algorithm using
the secant method. The arguments to this function are the name of the M-file
for the gradient, the current point, and the search direction. For example, the
function may be called 1inesearch _secant, and used by the function call
alpha=linesearch_secant (’grad’,x,d), where grad.m is the M-file
containing the gradient, x is the starting line search point, d is the search direction,
and alpha is the value returned by the function (which we use in the following
chapters as the step size for iterative algorithms (see, e.g., Exercises 8.18, 10.8)).

Note: In the solutions manual, we used the stopping criterion |d” V f (z + ad)| <
eldTVf(z)|, wheree > O is a prespecified number, V f is the gradient,  is the
starting line search point, and d is the search direction. The rationale for the above
stopping criterion is that we want to reduce the directional derivative of f in the
direction d by the specified fraction €. We used a value of ¢ = 104, and initial
conditions of 0 and 0.001.



