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orthogonal directions. Therefore, by Lemma 8.3, for each k, the value of +, is one
of two numbers, both of which are strictly less than 1. This proves the n = 2 case.
For the general n case, let v; and v be mutually orthogonal eigenvectors corre-
sponding t0 Amax(Q) and Amin(Q). Choose £(®) such that {®) — z* # 0 lies in
the span of v; and v, but is not equal to either. Note that g = Q(z(® — z*)
also lies in the span of v; and ws, but is not equal to either. By manipulating
z*+1) = £(*) _ q, %) as before, we can write g*+1) = (I — 01 Q)g®). Any
eigenvector of Q is also an eigenvector of I — Q. Therefore, g(*) lies in the span of
v; and v, for all k; that is, the sequence {g(¥)} is confined within the 2-dimensional
subspace spanned by v; and v2. We can now proceed as in the n = 2 case. |

In the next chapter, we discuss Newton’s method, which has order of convergence
at least 2 if the initial guess is near the solution.
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Ag1 Let {(*)} be a sequence that converges to 2*. Show that if there exists ¢ > 0
such that
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for sufficiently large k, then the order of convergence (if it exists) is at most p.

8.2 Let {<(*)} be a sequence that converges to z*. Show that there does not exist
p < 1 such that
] __.S;+C, _ .8.*__
lim

k—oo __N\.Qav — H*__v > 0.

83 Suppose that we use the Golden Section algorithm to find the minimizer of a
function. Let ug be the uncertainty range at the kth iteration. Find the order of
convergence of {ug}.

8.4 Suppose that we wish to minimize a function f : R — R that has a derivative f'.
A simple line search method, called derivative descent search (DDS), is described as
follows: given that we are at a point a:a. we move in the direction of the negative
derivative with step size a; that is, z**D = z(¥) — of’(2(¥)), where o > O is a
constant.

In the following parts, assume that f is quadratic: f(z) = az? — bz + ¢ (where
a, b, and c are constants, and a > 0).

a. Write down the value of z* (in terms of a, b, and ¢) that minimizes f.

b. Write down the recursive equation for the DDS algorithm explicitly for this
quadratic f.
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¢. Assuming the DDS algorithm converges, show that it converges to the optimal
value z* (found in part a).

d. Find the order of convergence of the algorithm, assuming it does converge.

e. Find the range of values of a for which the algorithm converges (for this
particular f) for all starting points z(©).

/ mm Consider the function

Vv

f(@) = 3(z2 + 23) + 42172 + 571 + 622 + 7,

where = [21,22]7 € R2?. Suppose we use a fixed step size gradient algorithm to
find the minimizer of f:

g* D = £*) _ oV f(z*).

Find the largest range of values of « for which the algorithm is globally convergent.

8.6 Consider the function f : R2 — R given by

F(@) = 2 +a3) + (14 @)zazs — (01 +2) 4,

where a and b are some unknown real-valued parameters.
a. Write the function f in the usual multivariable quadratic form.

b. Find the largest set of values of a and b such that the unique global minimizer
of f exists, and write down the minimizer (in terms of the parameters a and b).

¢. Consider the following algorithm:
D) = k) mﬂﬁgv.
Find the largest set of values of a and b for which the above algorithm converges
to the global minimizer of f for any initial point z©,
8.7 Consider the function f : R — R givenby f(z) = 3(z —¢)*>,c € R. We are
interested in computing the minimizer of f using the iterative algorithm
Tr1 = zx — arf'(2k),
where f' is the derivative of f and a is a step size satisfying 0 < ag < 1.

a Derive a formula relating f{zr.1) with f(zz), involving ay,.
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b. Show that the algorithm is globally convergent if and only if

oo
M ap = OQ0.
k=0

Hint: Use part a and the fact that for any sequence {ax} C (0, 1), we have

o0 (o 0]
EAHIQSHOAUMEQ = 00.
k=0 k=0

8.8 Consider the function f : R — R given by f(z) = 2 — z. Suppose we use
a fixed step size algorithm z(¥*1) = (% — o #/(2(%)) 10 find a local minimizer of
f. Find the largest range of values of a such that the algorithm is locally convergent
(i.e., for all (9 sufficiently close to a local minimizer z*, we have 2(8) — z*).

8.9 Consider the function f given by f(z) = (z — 1)2,z € R We are interested in
computing the minimizer of f using the iterative algorithm Try1 = Zp—a27 8 f'(z}),
where f' is the derivative of f, and 0 < o < 1. Does the algorithm have the descent
property? Is the algorithm globally convergent?

810 Let f : R = R, f € C3, with first derivative ' and second derivative f", and
unique minimizer z*. Consider a fixed step size gradient algorithm

k1) — (k) _ af' (z®).

Suppose f"(z*) # 0 and @ = 1/f"(z*). Assuming the algorithm converges to z*,
show that the order of convergence is at least 2.

8.11 Consider the optimization problem:
minimize || Az — b]|?,
where A € R™*™ m > n,and b € R™.

a. Show that the objective function for the above problem is a quadratic function,
and write down the gradient and Hessian of this quadratic.

b. Write down the fixed step size gradient algorithm for solving the above opti-
mization problem.

¢. Suppose
10
a=]r Y

Find the largest range of values for « such that the algorithm in part b converges
to the solution of the problem.
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8.12 Consider a function f : R* — R" givenby f(x) = Az +b, where A € R**"
and b € R™. Suppose A is invertible, and z* is the zero of f (i.e., f(z*) =0). We
wish to compute z* using the iterative algorithm

pE+1) — g(k) _ af (z®),
where a € R, a > 0. We say that the algorithm is globally monotone if for any (®,
lz*+D) — z*|| < ||l=® — z*|| for all k.

a. Assume that all the eigenvalues of A are real. Show that a necessary condition
for the algorithm above to be globally monotone is that all the eigenvalues of
A are nonnegative.
Hint: Use contraposition.

3 2 3
2 ae[3)
Find the largest range of values of a for which the algorithm is globally
convergent (i.e., z¥) — x* for all (0)),

b. Suppose

8.13 Let f : R* — R be given by f(x) = 127Qz — xTb, where b € R™ and
Q is a real symmetric positive definite 7 X n matrix. Suppose that we apply the
steepest descent method to this function, with £(®) # Q~1b. Show that the method
converges in one step, that is, (1) = Q'b, if and only if 2(©) is chosen such that
9 & Qz©® — b is an eigenvector of Q.

.14 Suppose we apply a fixed step size gradient algorithm to minimize

f(z) =27 Tﬁ\uw wwL z+zT —IHWL - 22

a. Find the range of values of the step size for which the algorithm converges to
the minimizer.

b. Suppose we use a step size of 1000 (which is too large). Find an initial
condition that will cause the algorithm to diverge (not converge).

8.15 Let f : R — R be given by f(z) = 27Qz — 2Tb, where b € R*, and Q
is a real symmetric positive definite n x n matrix. Consider the algorithm
(k1) — k) _ Barg®)

where g*) = Qz® — b, o) = g)Tg®) Jg(TQg®) and B € R is a given
constant. (Note that the above reduces to the steepest descent algorithm if g=1)
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Show that {x*)} converges to * = Qb for any initial condition (%) if and
onlyif 0 < 8 < 2.

8.16 Let f : R® — R be given by f(z) = 127 Qz — =Tb, where b € R*, and Q
is a real symmetric positive definite n x n matrix. Consider a gradient algorithm

2D = g _ g gF)
where g®) = Qz®) — b is the gradient of f at ®), and ay, is some step size.
Show that the above algorithm has the descent property (i.e., f(z*t1)) < f(z(*))
/whenever g'®) # 0) if and only if 4 > 0 for all k.

8.17 Given f : R* — R, consider the general iterative algorithm

2D = 8 4 6, d)

where dV), d® .. are given vectors in R”, and oy, is chosen to minimize f(z(*) +
p&:avw that is,
o = argmin f(z® + ad™®).

Show that for each k, the vector z(¥+1) —x(¥) is orthogonal to V f (z(¥+1)) (assuming
the gradient exists).

8.18 Write a simple MATLAB routine for implementing the steepest descent al-
gorithm using the secant method for the line search (e.g., the MATLAB function
of Exercise 7.9). For the stopping criterion, use the condition ||g(®|| < e, where
e = 1075, Test your routine by comparing the output with the numbers in Exam-
ple 8.1. Also test your routine using an initial condition of [-4, 5, 1], and determine
the number of iterations required to satisfy the above stopping criterion. Evaluate the
objective function at the final point to see how close it is to 0.

8.19 Apply the MATLAB routine from Exercise 8.18 to Rosenbrock’s function:
f(z) =100(z2 — 23)* + (1 — 1)°.

Use an initial condition of £(®) = [~2, 2]7. Terminate the algorithm when the norm
of the gradient of f is less than 10™%.

Newton’s Method

9.1 INTRODUCTION

Recall that the method of steepest descent uses only first derivatives (gradients) in
selecting a suitable search direction. This strategy is not always the most effective.
If _.:m_._n_. derivatives are used, the resulting iterative algorithm. .H:mw. perform better

than the steepest descent method. Newton’s method (sometimes nmmﬁ.@n Newton-
_Raphson method) uses first and second derivatives and indeed does erform better
than the steepest descent method if the initial point is.close to the minimizer. The
idea behind this method is as follows. HQ‘? en a starting point, we construct a quadratic
‘approximation to the objective function that matches the first and second derivative
values at that point. We then minimize the approximate (quadratic) function instead

of the original objective function. We use the minimizer of the approximate | m::nzo:

“._as the starting point in the next step and repeat the procedure iteratively. If the

objective function is quadratic, then the approximation is exact;-and-The method
yields the true minimizer in one step. If, on the other hand, the objective function is
not quadratic, then the approximation will provide only an estimate of the position
of the true minimizer. Figure 9.1 illustrates the above idea.

We can obtain a quadratic approximation to the given twice continuously differ-
entiable objection function f : R® — R using the Taylor series expansion of f about
the current point 2(¥) | neglecting terms of order three and higher. We obtain

f@) ~ £@®) + (@ - 2®)Tg® + (2~ 2®)T Fa®)(z - 2) 2 g(a),



