omponent of the Hessian

$$(x) \frac{\partial^2 r_i}{\partial x_k \partial x_j}(x)$$

-squares problem is given

$$I(x)^T r(x)$$
.

second derivatives of the ligibly small. In this case, y called the Gauss-Newton

$$^{T}r(x)$$
.

calculation of the second

9.2, with

 $1, \dots, 21.$

ix with elements given by:

$$=1,\ldots,21.$$

vton algorithm to find the (x_m, y_m) . Figure 9.3 shows ss-Newton algorithm. The (x_m, y_m) d (x_m, y_m) .

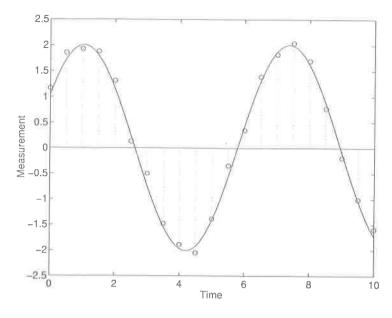


Figure 9.3 Sinusoid of best fit in Example 9.3.

A potential problem with the Gauss-Newton method is that the matrix $J(x)^T J(x)$ may not be positive definite. As described before, this problem can be overcome using a Levenberg-Marquardt modification:

$$x^{(k+1)} = x^{(k)} - (J(x)^T J(x) + \mu_k I)^{-1} J(x)^T r(x).$$

The above is referred to in the literature as the *Levenberg-Marquardt algorithm*, because the original Levenberg-Marquardt modification was developed specifically for the nonlinear least-squares problem. An alternative interpretation of the Levenberg-Marquardt algorithm is to view the term $\mu_k I$ as an approximation to S(x) in Newton's algorithm.

EXERCISES

9.1 Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (x - x_0)^4$, where $x_0 \in \mathbb{R}$ is a constant. Suppose that we apply Newton's method to the problem of minimizing f.

- a. Write down the update equation for Newton's method applied to the problem.
- **b.** Let $y^{(k)} = |x^{(k)} x_0|$, where $x^{(k)}$ is the kth iterate in Newton's method. Show that the sequence $\{y^{(k)}\}$ satisfies $y^{(k+1)} = \frac{2}{3}y^{(k)}$.
- c. Show that $x^{(k)} \to x_0$ for any initial guess $x^{(0)}$.

更页	\$10,191	107年12月共同主持人人事費	3107120548	電影學院	2019/2/26
	\$10,191	107年12月主持人人事費	3107120547	電対型院	2019/2/26
超过	\$10,191	107年11月共同主持人人事費	3107110631	電資學院	2月26日

150 NEWTON'S METHOD

- **d.** Show that the order of convergence of the sequence $\{x^{(k)}\}$ in part b is 1.
- e. Theorem 9.1 states that under certain conditions, the order of convergence of Newton's method is at least 2. Why does that theorem not hold in this particular problem?
- **9.2** Consider the problem of minimizing $f(x) = x^{\frac{4}{3}} = (\sqrt[3]{x})^4$, $x \in \mathbb{R}$. Note that 0 is the global minimizer of f.
 - a. Write down the algorithm for Newton's method applied to this problem.
 - **b.** Show that as long as the starting point is not 0, the algorithm in part a does not converge to 0 (no matter how close to 0 we start).
- **9.3** Consider "Rosenbrock's Function": $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$, where $x = [x_1, x_2]^T$ (known to be a "nasty" function—often used as a benchmark for testing algorithms). This function is also known as the banana function because of the shape of its level sets.
 - **a.** Prove that $[1,1]^T$ is the unique global minimizer of f over \mathbb{R}^2 .
 - **b.** With a starting point of $[0,0]^T$, apply two iterations of Newton's method. *Hint:* $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 - c. Repeat part b using a gradient algorithm with a fixed step size of $\alpha_k=0.05$ at each iteration.
- 9.4 Consider the modified Newton's algorithm

$$x^{(k+1)} = x^{(k)} - \alpha_k F(x^{(k)})^{-1} g^{(k)},$$

where $\alpha_k = \arg\min_{\alpha \geq 0} f(x^{(k)} - \alpha F(x^{(k)})^{-1} g^{(k)})$. Suppose that we apply the algorithm to a quadratic function $f(x) = \frac{1}{2} x^T Q x - x^T b$, where $Q = Q^T > 0$. Recall that the standard Newton's method reaches the point x^* such that $\nabla f(x^*) = 0$ in just one step starting from any initial point $x^{(0)}$. Does the above modified Newton's algorithm possess the same property? Justify your answer.