ymponent of the Hessian

) axa:g;j (‘”)) '

-squares problem is given

[ () Tr(x).

second derivatives of the
ligibly small. In this case,
y called the Gauss-Newton

v ().

calculation of the second

9.2, with
o2l

ix with elements given by:

vton algorithm to find the
m,Ym). Figure 9.3 shows
ss-Newton algorithm. The
d ¢ = 0.541. [ |
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Figure 9.3 Sinusoid of best fit in Example 9.3.

10

149

A potential problem with the Gauss-Newton method is that the matrix J (x) 7 J (z)
may not be positive definite. As described before, this problem can be overcome

using a Levenberg-Marquardt modification:

2t = 28 (J(@)TT (@) + D) T ()T r ().

The above is referred to in the literature as the Levenberg-Marquardt algorithm, be-
cause the original Levenberg-Marquardt modification was developed specifically for
the nonlinear least-squares problem. An alternative interpretation of the Levenberg-
Marquardt algorithm is to view the term 1, I as an approximation to S(x) in Newton’s

algorithm, Q\ i
.
EXERCISES “1.3

Wi 1) 1 Let f: R — Rbe given by f(z) = (z — z0)*, where o € R is a constant.
"~ Suppose that we apply Newton’s method to the problem of minimizing f.

a. Write down the update equation for Newton’s method applied to the problem.

b. Lety® = |z(!) —z,|, where z(¥) is the kth iterate in Newton’s method. Show

that the sequence {y¥)} satisfies y(i+1) = 2y(%),

c. Show that z(*) — z; for any initial guess (®.




150 NEWTON'S METHOD

d. Show that the order of convergence of the sequence {:r(’“‘)} in partbis 1.
onditions, the order of convergence of

e. Theorem 9.1 states that under certain ¢
hat theorem not hold in this particular

Newton’s method is at least 2. Why does t

problem?

9.2 Consider the problem of minimizing fle) =2 (¢/z)*, © € R Note that 0
is the global minimizer of I

a. Write down the algorithm for Newton’s method applied to this problem.

b. Show that as long as the starting point is not 0, the algorithm in part a does not

converge to 0 (no matter how close to 0 we start).

/’V
/ . ;
/ 9.3 Consider “Rosenbrock’s Function™: f(x) = 100(z2 — )2+ (1 - x1)?, where
ion—often used as a benchmark for

T = [ml,mg]T (known to be a “nasty” functi
testing algorithms). This function is also known as the banana function because of

the shape of its level sets.

a. Prove that [1,1]7 is the unique global minimizer of f over R?.

() >
S [ & . B N~
) ¥ i b. With a starting point of [0, 017, apply two iterations of Newton’s method. Hint:
IS | am P S R W I
Bl o |k ¢c d| “ad-bcl-c o
al | H| m
U'f ey [t | c. Repeat part b using a gradient algorithm with a fixed step size of oy, = 0.05 at
e e e each iteration.
\}h /' ek 1
-~ | | | | |

9.4 Consider the modified Newton’s algorithm

S;:::

m(Lt+1) - m(k) _ akF(m“"))glg("’),

|

-"‘ where age = argmin -, [lat®) — al(z*1) tglk), Suppose that we apply the
algorithm o a quadratic function [(x) = LaTQa — aTb, where Q = Q" > 0.

Recall that the standard Newton’s method reaches the pointx’ suchthat Vf(a") =0

in just one step starting from any initial point 29 Does the above modified Newton's

algorithm possess the same property? Justify your answer.
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