S

b. (AN = A.

The above two properties are simil
inverse. However, we point out that the
in general (see Exercise 12.26).

Finally, it is important to note 9&. we
an alternative way, mo:ognm. the definition o o
definition of the generalized inverse of a Bmﬁ.x
Al e Rrx™ satisfying the following properties:

i the usual matrix
ar to those that are satisfied b
Eovo&%bybwﬁ = bw.ﬁ does not hold

can define the generalized inverse in
f Penrose. Specifically, the Huonao%
€ R™*" is the unique matrix

1. AATA = A;

“Ebku>r a
3. (AANT = AAT; ;
4. (ATA)T = ATA.

ove is equivalent to Definition 12.1 .Amnw Exercise Hw.www.
eneralized inverses and their applications, we :&m e
ael and Greville [4], and Campbell and Meyer [ 1.

The Penrose definition ab
For more information on g
reader to the books by Ben-Isr

EXERCISES

3 5. and 6 m/s? by applying forces of 1, 2,and 3 N,
: ,Hmi F = ma, where F is the force and a is the
e rock using the least squares method.

12.1 Arockis accelerated to
respectively. Assuming Newton’s 1
acceleration, estimate the mass m of t

— 3.4, and 5 cm under applied forces F=1,
“ aw L = a + bF, estimate the normal

ares approach.

ing 1 lengths L
112.2 Aspring1s stretched to . :
{ 9 and 4 N, respectively. >mmEE.=m Hooke’s 1

:.Hmmﬁ « and spring constant b using the least squ

’ .
Q

i shown in the
iginal point at certain time instants. The results of the experiment are
or

following table.

1.00 2.00 3.00
500 195 440

Time (seconds)
Distance (meters)

The equation relating the distance s and the tim

by L

s=

2

2.

ate the gravitational constant

e t at which s is measured is given

0

e S e : ;
squares estimate of g using the experimental results from the abos

mnda
table.

D
least-

b. Suppose that we take an additional measurement at time 4.00, and obtain
distance of 78.5. Use the recursive least-squares algorithm to calculate
updated least-squares estimate of g.

12.4 Suppose we wish to estimate the value of the resistance R of a resistor. Ohn
Law states that if V' is the voltage across the resistor, and I is the current throu
the resistor, then V' = IR. To estimate R, we apply a 1 amp current through t
resistor and measure the voltage across it. We perform the experiment on 7 volta
~ measuring devices, and obtain measurements of V;,...,V,. Show that the le:
squares estimate of R is simply the average of V;,...,V,,.

12.5 The table below shows the stock prices for three companies, X, Y, and
tabulated over three days:

Day

(S}

3

N~ X
DY e O\
U N

5
3
2

Suppose an investment analyst proposes a model for the predicting the stock price
X based on those of Y and Z:

bx = apy +Squ

where px, py, and pz are the stock prices of X, Y, and Z, respectively, and a, b a

real-valued parameters. Calculate the least squares estimate of the parameters q ai
b based on the data in the above table.

12.6 We are given two mixtures, A and B. Mixture A contains 30% gold, 40% silve
and 30% platinum, whereas mixture B contains 10% gold, 20% silver, and 70
platinum (all percentages of weight). We wish to determine the ratio of the weig
of mixture A to the weight of mixture B such that we have as close as possible to
total of 5 ounces of gold, 3 ounces of silver, and 4 ounces of platinum. Formula
and solve the problem using the linear least-squares method.

12.7 Background: If Az + w = b, where w is a “white noise” vector, then defir
the least-squares estimate of x given b to be the solution to the problem

minimize, ||Az — b||%.



Figure 12.5 Input-output system in Exercise 12.12

a. Suppose we wish to find the best linear estimate of the system based on the
above input-output data. In other words, we wish to find a 8, € R to fit the

~

model y; = Gug, k = 1,...,n. Using the least squares approach, derive a

formula for 8,, based on u3,...,up and y1, ..., Yn.
b. Suppose the data in part a is generated by
Yr = Ouy + e,

where 6 € R and ug = 1 for all k. Show that the parameter f,, in part a
converges to # as n — oo if and only if

1S
:mewomm‘mwlo.

. 12.13 Consider a discrete-time linear system z,; = azy + buy, where uy, is the
¢ input at time k, zj is the output at time k, and a,b € R are system parameters.
Suppose that we apply a constant input ug, = 1 for all ¥ > 0, and measure the first 4
values of the output to be zo = 0, z1 = 1, £ = 2, z3 = 8. Find the least-squares
estimate of a and b based on the above data.

12.14 Consider a discrete-time linear system zy4; = azy + bug, where uy is the
input at time k, zj, is the output at time &, and a,b € R are system parameters.
Given the first n + 1 values of the impulse response ho, . . . , hy, find the least squares
estimate of @ and b. You may assume that at least one hy, is nonzero.

Note: The impulse response is the output sequence resulting from an input of ug = 1,
uy, = 0 for k 5 0, and zero initial condition 2y = 0.

12.15 Consider a discrete-time linear system .1 = azx -+ bug, where uy, is the
input at time k, j, is the output at time &, and a, b € R are system parameters. Given
the first n + 1 values of the step response sg, . .., Sn, Where n > 1, find the least
squares estimate of @ and b. You may assume that at least one s, is nonzero.

Note: The step response is the output sequence resulting from an input of uy, = 1 for
k > 0, and zero initial condition g = 0 (i.e., s = 7o = 0).

A2.16 Let A € R™*"™ b € R, m < n,rank A = m, and g € R™. Consider the
/ problem

minimize e — |
subject to Az =b.

Show that the above problem has a unique solution given by

"= \»HTQ\PHVIH@ + AN: - \wﬂAbbﬂvlpbvao.

12.17 Given A € Rmxn _
problem »M S n,rank A =m,and by,...,b, € R™, consider the

minimize _T»S - bi|? + || Az — bol® + - + || Az — IES (12.1)
Suppose that z} is the solution to the problem
minimize :ba — b;l|?,
where i = 1,...,p. Write the solution to (12.1) in terms of x] ¥
yeeey T
Su.,uw hwﬁ .km m R™ ", b€ R™, m < n, and rank A = m. Show that z* =
A" (AA")" b s the only vector in R(AT) satisfying Az* = b,

12.19 Show that in K ’ i i
1 atin Kaczmarz’s algorithm, if £(©) = 0, then 2(*) ¢ R(AT) for all

12.20 Consider Kaczmarz’s algorithm with (%) £ g,

a. Show that there exists a unique point minimizing ||z — 2(%)|| subject to {z :

Az = @w

b. Show that Kaczmarz’s algorithm converges to the point in part a.

12.21 Consider Kaczmarz’s algorithm with z(® = 0, where m = 1; that is

x&”_”QHJmH%Hx:‘NSQQWONSQO
> < p < 2. Show that th i
such that [l2 40 — 2] < 7la® — o[ foral k> 0.

12.22 Show that in Kaczmarz’s al orithm, if 4 = T
0 for each k. gorithm, it pu = 1, then by 41 a2+ =

12.23 Consider the problem of minimizing || Az — b||? over R*, where A € R™xn

w» m %S.. Let * be a solution. Suppose that A = BC is a full-rank factorization of
; that is, rank A = rank B = rank C = r,and B € R™%" C ¢ R™*", Sh
that the minimizer of || By — b|| over R" is Cz*. , e

12.24 Prove the following properties of generalized inverses:
a. (AT)t = (aAhT,
b. (AN = 4.

12.25 Show that the P iti ot ) .
Definition 1.1, e Penrose definition of the generalized inverse is equivalent to

12.26 Construct matrices A; and A, such that (A1 At £ bm\ﬁf.




