computation of T(z*, u*). Note also that in this case, T'(z*) = {0}. We have

T(z*,u") = {y: [-1,1]y = 0} = {{a,a]" : a € R}.
We then check for positive definiteness of L(z*, \*, u*) on T'(x*, u*). We have

2 0| |a

a2
oo@lw@.

y L(z*, \*, u*)y = [a,d]

Thus, L(z*, \*, u*) is positive definite on T'(z*, u*). Observe that L(x*, A\*, u*)
is, in fact, only positive semidefinite on R2.

By the second-order sufficient conditions, we conclude that z* = [1/2,3/2]" is
a strict local minimizer. 7]

EXERCISES

'/20.1 Find local extremizers for
a. =7 + 73 — 221 — 10z + 26 subject to txo — 27 <0, 511 + 222 < 5;
b. z? + 23 subjectto z; > 0,z > 0, 1 + 25 > 5;

¢. o} +6z125 — 471 — 22 subject to 23 4 225 < 1, 221 — 275 < 1.

20.2 Find local minimizers for z} + z3 subjectto 2% + 2z 25+ 23 = 1, 22—z, < 0.

20.3 Write down the Karush-Kuhn-Tucker condition for the optimization problem
in Exercise 15.6.

/\ 20.4 Consider the problem
minimize To— (21 —2)%+3
subject to xo > 1,

where z1 and z» are real variables. Answer each of the following questions, making
sure that you give complete reasoning for your answers.

a. Write down the KKT condition for the problem, and find all points that satisfy
the condition. Check whether or not each point is regular.

b. Determine whether or not the point(s) in part a satisfy the second-order neces-
sary condition.

¢. Determine whether or not the point(s) in part b satisfy the second-order suffi-
cient condition.

)"="0 does not enter the
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20.5 Consider the problem

minimize To

subject to T2 > —(z3 — 1)2 +3.
a. Find all points satisfying the KKT condition for the problem.
b. For each point z* in part a, find T'(x*), N (x*), and T (z*).

c. Find the subset of points from part a that satisfy the second-order necessary
condition.

.6 Consider the optimization problem
minimize f(x)
subject to z €,
where f(z) = 7123, where = [z1,22]7,and Q = {z € R? : ; = 33, 27 > 0}.
a. Find all points satisfying the KKT condition.

b. Do each of the points found in part a satisfy the second-order necessary condi-
tion?

¢. Do each of the points found in part a satisfy the second-order sufficient condi-

tion?

20.7 Consider the problem

1
minimize m__\».s. — bl?
subject to 14+, =1
L1y...43Tn N 0.
a. Write down the KKT condition for the problem.

b. Define what it means for a feasible point z* to be regular in this particular given
problem. Are there any feasible points in this problem that are not regular? If
yes, find them. If not, explain why not.

20.8 Let g : R* — R and xp € R™ be given, where g(zo) > 0. Consider the
problem

o 1 2
minimize m__a — xol|

subject to g(x) <0.

}



which of the following equations/inequalities hold:
i g(xz*) <0
ii. g(z*) =0 ,
iii. (x* —xz9)TVg(z*) <0
iv. (z* — 20)TVg(z*) =0

v. (z* — z0)TVg(z*) > 0.

20.9 Consider a square room, with corners located at [0,0]7, [0,2]%, [2,0]7, and

[2,2]T (in R?). We wish to find the point in the room that is closest to the point
[3,4]7.

a. Guess which point in the room is the closest point in the room to the point
[3,4]7.

b. Use the second-order sufficient conditions to prove that the point you have
guessed is a strict local minimizer.

Hint: Minimizing the distance is the same as minimizing the square distance.

20.10 Consider the quadratic programming problem

minimize

1 r
ma Qx
subject to Ax < b,

where Q = QT > 0, A € R™*" and b > 0. Find all points satisfying the KKT
condition.

20.11 Consider the problem
BMEEMNm Tz

subject to Az <0,

where A € R™*™, m < n, is of full rank. Use the KKT theorem to show that if
there exists a solution, then the optimal objective function value is 0.

20.12 Consider a linear programming problem in standard form (see Chapter 15).
a. Write down the Karush-Kuhn-Tucker condition for the problem.

b. Use part a to show that if there exists an optimal feasible solution to the linear
program, then there exists a feasible solution to the corresponding dual problem

that achieves an objective function value that is the same as the optimal value
of the primal (compare this with Theorem 17.1).

¢. Usepartsaandb to prove thatif z* is an optimal feasible solutions of the primal,
then there exists a feasible solution A* to the dual such that (¢ —\*T A)x* =0
(compare this with Theorem 17.3).

20.13 Consider the constraint set S = {x : h(z) = 0,g(z) < 0}. Let z* € S be
a regular local minimizer of f over S, and J(z*) the index set of active inequality

constraints. Show that x* is also a regular local minimizer of f over the set S!' =
{z ;h(x) =0,g9;(x) =0,j € J(z*)}.

0.14 Solve the following optimization problem using the second-order sufficient
conditions:

minimize 3 + 73
subject to T3 -2, -4<0
Ty — I — 2 M 0.

See Figure 21.1 for a graphical illustration of the problem.

20.15 Solve the following optimization problem using the second-order sufficient
conditions:

minimize 3 + x5
subject to T, — HW -4>0
L1 — 10 M 0.

See Figure 21.2 for a graphical illustration of the problem.

20.16 Consider the problem

minimize T3 + 73

subject to 4—z,-22<0
3ze —x1 <0
-3z —x1 < 0.

Figure 21.3 gives a graphical illustration of the problem. Deduce from the figure
that the problem has two strict local minimizers, and use the second-order sufficient
conditions to verify the graphical solutions.

20.17 Consider the problem:
S 1.
minimize m__ |
m:E.moZo aTz =0

z >0,

i A
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x{-10=0

Figure 21.2 Situation where only one constraint is active

The problem is depicted in Figure 21.2. At the solution, only one constraint is mom<o.
If we had only known about this we could have handled this problem as a constrained

optimization problem using the Lagrange multiplier method. [ |

Example 21.3 Consider the optimization problem

Py o
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P 1=0
f=10

Figure 21.3 Situation where the constraints introduce local minimizers

3z — 21 <0
|w&m - T1 M 0.
The problem is depicted in Figure 21.3. This example illustrates the situation where

the constraints introduce local minimizers, even though the objective function itself
has only one unconstrained global minimizer. E

Some of the difficulties illustrated in the above examples can be eliminated if
we restrict our problems to convex feasible regions. Admittedly, some important
real-life problems do not fit into this framework. On the other hand, it is possible to
give results of a global nature for this class of optimization problems. In the next
section, we introduce the notion of a convex function, which plays an important role
in our subsequent treatment of such problems.

21.2 CONVEX FUNCTIONS

We begin with a definition of the graph of a real-valued function.

Definition 21.1 The graphof f : Q@ —» R, @ C R", is the set of points in 2 x R C
R™*1 given by
{lz, f(@)]" -z € Q}.
B

We can visualize the graph of f as simply the set of points on a “plot” of f(x)
versus x (see Figure 21.4). We next define the “epigraph” of a real-valued function.

Definition 21.2 The epigraph of a function f : Q@ — R, Q@ C R", denoted epi(f), is
the set of points in {2 x R given by

epi(f) = {[z,6]" :z € Q,B € R, B > f(a)}.



