z=[z1,...,zN,u1,...,uyn]T.

With these definitions, the problem reduces to the previously considered quadratic
programming problem

. 1
minimize MNH@N

subject to Az =0,
where Q is 2N x 2N, Ais N x 2N, and b € RY . The solution is
2* = @quﬁﬂ?ﬁ@luxﬁﬂvlu@.

The first IV components of z* represent the optimal state signal in the interval (1,N],
whereas the second N components represent the optimal control signal.

In practice, the computation of the matrix inverses in the above formula for z*
may be too costly. There are other ways to tackle the problem by exploiting its
special structure. This is the study of optimal control (see, e. g., [11],[15], [62], [63],
or [71]).

|

The following example illustrates an application of the above discussion.

Example 19.10 Credit-card holder dilemma. Suppose we currently have a credit-
card debt of $10,000. Credit-card debts are subject to a monthly interest rate of 2%,
and the account balance is increased by the interest amount every month. Each month,
we have the option of reducing the account balance by contributing a payment to the
account. Over the next 10 months, we plan to contribute a payment every month in
such a way as to minimize the overall debt level while at the same time minimize the
hardship of making monthly payments.

We solve our problem using the LQR framework as described in Example 19.9.
Let the current time be 0, z;, the account balance at the end of month %, and u;, our
payment in month k. We have

T = H.OMH»IH — Ug, k= Hv ey HOv

that is, the account balance in a given month is equal to the account balance in the
previous month plus the monthly interest on that balance minus our payment that

minimize
subject to zr =1.02z5_1 —ug, k=1,...,10, zo = 10000,

ch is an instance of the LQR problem. The parameters g and r reflect our priority
ading off between debt reduction and hardship in making payments. The more
ious we are to reduce our debt, the larger the value of g relative to . On the other

d, the more reluctant we are to make payments, the larger the value of r relative
mﬂ._o solution to the above problem is given by the formula derived in Example 19.9.
Figure 19.15, we plot the monthly account balances and payments over the next
10 months using ¢ = 1 and r = 10. We can see here that our debt has been reduced
to less than $1,000 after 10 months, but with a first payment close to $3,000. If we
el that a payment of $3,000 is too high, then we can try to reduce this amount by
creasing the value of r relative to g. However, going too far along these lines can
lead to trouble. Indeed, if we use ¢ = 1 and 7 = 300 (see Figure 19.16), although the
monthly payments do not exceed $400, the account balance is never reduced by much
below $10,000. In this case, the interest on the account balance eats up a significant
‘portion of our monthly payments. In fact, our debt after 10 months will be higher

than $10,000.

,_N.H, ‘_W,N\\m\..,w
.7 . \N__

EXERCISES

/ﬁ .1 Find local extremizers for the following optimization problems:

a.

minimize &m + 2z129 + waw + 4z1 + 525 + 623
subject to T + 229 =
4z, + 523 = 6;

T 2
maximize 4z, + 75
subject to x4 2 =9;

maximize

subject to
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19.2 Consider the problem
minimize f(x)
subject to h(z) =0,

where f : R2 -5 R, h: R2 - R, and Vf(z) = [z1,71 + 4]7. Suppose that z* is
an optimal solution, and Vh(z*) = [1,4]T. Find V f(z*).

Monthly account balance

/—Ru Consider the problem

minimize |z — @o||?

subject to lz||*> = 9,

where zo = [1,/3]7.

Monthly payment

a. Find all points satisfying the Lagrange condition for the problem.

5 6 b. Using second-order conditions, determine whether or not each of the points in
Month part a are local minimizers.

Figure 19.15 Plots for E; le 19.10 withg = 1 and » = 10 , . . .
9 ofs for Lxample wih g anar 19.4 We wish to construct a closed box with minimum surface area that encloses a

volume of V' cubic feet, where V' > 0.

a. Let a, b, and ¢ denote the dimensions of the box with minimum surface area
(with volume V). Derive the Lagrange condition that must be satisfied by a,
b, and c.

What does it mean for a point * to be a regular point in this problem? Is the
point * = [a, b, c|T a regular point?

a1
o
o
o

Find a, b, and c.

Monthly account balance

Does the point z* = [a, b, ¢]T found in part c satisfy the second-order sufficient
condition?

19.5 Find local extremizers of

a. f(z1,%2,73) = 3 + 373 + x5 subject to 77 + z% + 22 = 16;

—_
o
o
o

Monthly payment

b. f(z1,z2) = 2% + 73 subject to 3z% + 4z1x5 + 622 = 140.
1+ 1 2

m m L_o .
Month 19.6 Consider the problem

. . : minimize 2z1 + 3z9 — 4, 1,22 € R
Figure 19.16 Plots for Example 19.10 with ¢ = 1 and r = 300 .
subject to T1T9 = 6.
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a. Use hmmqmmma,m theorem to find all possible local minimizers and maximizers.

b. Use the second-order sufficient conditions to specify which points are strict
local minimizers and which are strict local maximizers.

¢. Are the points in part b global minimizers or maximizers? Explain.

/N 7 Find all solutions to the problem

maximize

subject to

19.8 Consider a matrix A € R™*". Define the induced 2-norm of A, denoted
|| A||2, to be the number

| Allz = max{||Az| : ¢ € R", |||l = 1},

where the norm || - || on the right-hand side above is the usual Euclidean norm.

Suppose the eigenvalues of AT Aare \q, . .., \n (ordered from largest to smallest).
Use Lagrange’s theorem to express ||A|z in terms of the above eigenvalues (cf.
Theorem 3.8).

19.9 Let P = PT be a positive definite matrix. Show that any point z satisfying
1 — 2T Px = 0 is a regular point.

19.10 Consider the problem:

maximize ary + bxs, T1,T2 €ER

subject to 3 + zi =2,
where a,b € R. Show that if [1, 1]7 is a solution to the problem, then a = b.
/\ 19.11 Consider the problem:

minimize \auam — 21, r1,22 € R
subject to z2 —z2 =0.
a. Apply Lagrange’s theorem directly to the problem to show that if a solution
exists, it must be either [1,1]7 or [-1,1]7.

b. Use the second-order necessary conditions to show that [—1, 1] cannot pos-
sibly be the solution.

¢. Use the second-order sufficient conditions to show that [1,1]7 is a strict local
minimizer.

12 Let A € R™*™ m < n,rank A = m, and To € R™. Let =* be the point on
he nullspace of A that is closest to o (in the sense of Euclidean norm).

a. Show that z* is orthogonal to £* — Zo.

b. Find a formula for * in terms of A and @o.

19.13 Consider the quadratic programming problem

1
minimize MSHQH
subject to Az =0,

where Q = Q% >0, A € R"*", m < n, and rank A = m. Use the Lagrange
condition to derive a closed-form solution to the problem.

19.14 Let L be an n x n real symmetric matrix, and let M be a subspace of R"
with dimension m < n. Let {b1,...,bm} CR" bea basis for M, and let B be the
n X m matrix with b; as the ith column. Let L o4 be the m x m matrix defined by
W = BT LB. Show that L is positive semidefinite (definite) on M if and only if

- L, is positive semidefinite (definite).

Note: This result is useful for checking that the Hessian of the Lagrangian function
at a point is positive definite on the tangent space at that point.

19.15 Consider the sequence {zx }, zx € R, generated by the recursion

Tpy1 = azg +bug, k>0 (a,b € R, a,b#0),

El

where ug, U1, U2, - - - is a sequence of “control inputs,” and the initial condition Zo #0
is given. The above recursion is also called a discrete-time linear system. We wish
to find values of control inputs uo and u; such that 5 = 0, and the average input
energy (u3 + u?)/2 is minimized. Denote the optimal inputs by ug and u7.

a. Find expressions for u$ and u} in terms of a, b, and zo.

b. Use the second-order sufficient conditions to show that the point u* =
[ug,u$]T in part a is a strict local minimizer.

19.16 Consider the discrete-time linear system T = 2%k_1 + ug, k > 1, with
zo = 1. Find the values of the control inputs u; and u to minimize

1 H
HW + M@w + W@w




