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Convex Optimization
| | Problems

21.1 INTRODUCTION |

The optimization problems posed at the beginning of this part are, in general, very
: difficult to solve. The source of these difficulties may be in the objective function
L or the constraints. Even if the objective function is simple and “well behaved,” the

nature of the constraints may make the problem difficult to solve. We illustrate some
of these difficulties in the following examples.

Example 21.1 Consider the optimization problem I
minimize z? + 22

subject to To—11—2<0

xf —z9—4<0.

The problem is depicted in Figure 21.1. As we can see in Figure 21.1, the con- i
strained minimizer is the same as the unconstrained minimizer. At the minimizer, '
all the constraints are inactive. If we had only known about this fact we could have |

approached this problem as an unconstrained optimization problem using techniques
from Part I1. [ |

Example 21.2 Consider the optimization problem

minimize 2} + 22
subject to 1 —10<0 ‘
T — 33 —-4>0.
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The problem is depicted in Figure 21.2. At the solution, only one constraint is active.
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X4 -10=0

Figure 21.2 Situation where only one constraint is active

If we had only known about this we could have handled this problem as a constrained
optimization problem using the Lagrange multiplier method. |

Example 21.3 Consider the optimization problem

x%+zg
4—1,-23<0

minimize

subject to
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has only one unconstrained global minimizer.

in our subsequent treatment of such problems.

21.2 CONVEX FUNCTIONS
We begin with a definition of the graph of a real-valued function.

R™*! given by :

{lz, f(x)]T :z € Q}.

the set of points in 0 x R given by

epi(f) ={[z, BT :x € QB RS > f(z)}.

Figure 21.3  Situation where the constraints introduce local minimizers

Definition 21.1 The graph of f : @ — R, Q C R", is the set of points in Q x R C

We can visualize the graph of f as simply the set of points on a “plot” of f (z)
versus x (see Figure 21.4). We next define the “epigraph” of a real-valued function.

Definition 21.2 The epigraph of a function f : @ — R,  C R", denoted epi(f), is

419

The problem is depicted in Figure 21.3. This example illustrates the situation where
the constraints introduce local minimizers, even though the objective function itself

Some of the difficulties illustrated in the above examples can be eliminated if
we restrict our problems to convex feasible regions. Admittedly, some important
real-life problems do not fit into this framework. On the other hand, it is possible to
give results of a global nature for this class of optimization problems. In the next
section, we introduce the notion of a convex function, which plays an important role
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f(x) \

epigraph of f

graph of f

Figure 21.4 The graph and epigraph of a function f:R=R

“ The epigraph epi(f) of a function f is simply the set of points in 2 X R on or
above the graph of f (see Figure 21.4). We can also think of epi(f) as a subset of
RrHL.

Recall that a set @ C R™ is convex if for every 1,22 € Qand a € (0,1),
az1 + (1 — a)zs € Q (see Section 4.3). We now introduce the notion of a “convex

L function.”

Definition 21.3 A function f : @ — R, @ C R™, is convex on Q if its epigraph is a
convex set. B

Theorem 21.1 Ifafunction f : 1 = R Q C R, is convex on Q, then () is a convex

set. o

Proof. We prove this theorem by contraposition. Suppose that {2 is not a convex set.
Then, there exist two points y; and y, such that for some o € (0,1),

z:ay1+(1—a)’y2 gﬂ

Let
Br= f(y1), B2 = f(ys)-

5] [%]

belong to the graph of f, and hence also the epigraph of f. Let

voelg]re-alz]-

We have ]

Then, the pairs

z

w= [aﬂl +(1-a)Bs
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But note that w ¢ epi(f), because z ¢ Q. Therefore, epi(f) is not convex, and
hence f is not a convex function. [ |

The nc?xt t.heo.rem gives a very useful characterization of convex functions. This
characterization is often used as a definition for a convex function.

Theorem.21.2 A function f : Q — R defined on a convex set Q C R™ is convex if
and only if forall ¢,y € Q and all o € (0,1), we have

floax + (1 -a)y) < af(x) + (1 -a)f(y).

Proof. <=: Assume that forall ,y € Q and a € (0, 1),

flaz + (1 -a)y) < af(z) + (1 -a)f(y).

Let [?B.T,a]T and [y7,b]T be two points in epi(f), where a,b € R. From the
definition of epi(f) it follows that

f@)<a, fly)<b
Therefore, using the first inequality above, we have
flax+ (1 - a)y) <aa+ (1 - a)b.
Because (2 is convex, ax + (1 — a)y € Q. Hence,

[iﬂgi 8 :Z;é’] € epi(f),

which implies that epi(f) is a convex set, and hence f is a convex function.
=-: Assume that f : ) — R is a convex function. Let x,y € 2 and

f@)=a, f(y)=0.

T Y .
=].[2] <t
Because f is a convex function, its epigraph is a convex subset of R"*1. Therefore,
for all @ € (0, 1), we have

o[ ra-af)- 2o cmon

Thus,

The above implies that for all @ € (0, 1),

flaz + (1 -a)y) <ca+(1-a)h=af(@)+ (1 -a)f(y)
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Figure 21.5 Geometric interpretation of Theorem 21.2

Thus, the proof is completed. [ |

In the above theorem, the assumption that 2 be open is not necessary, as long as
f € C* on some open set that contains Q(e.g., f €ConR™).

A geometric interpretation of the above theorem is given in Figure 21.5. The
theorem states that if f : @ — R is a convex function over a convex set £, then for
all &,y € Q, the points on the line segment in R*** connecting [T, f(z)]T and
[yT, f(y)]¥ must lie on or above the graph of f

Definition 21.4 A function f : Q@ — R on a convex set {} C R" is strictly convex if
forallz,y € Q, = #y,and a € (0,1), we have

flax+ (1 - a)y) < af(z) + (1 - a)f(y)
B

From the above definition, we see that for a strictly convex function, all points on the
open line segment connecting the points [, f(z)]” and [y, f(y)]7 lie (strictly)
above the graph of f.

Definition 21.5 A function f : Q — R onaconvex set {2 C R is (strictly) concave
if —f is (strictly) convex.

Note that the graph of a strictly concave function always lies above the line segment
connecting any two points on its graph.

Example 21.4 Let f(z) = z122. Is f convex over Q={z:3; >0, z2 >0}?
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The answer is no. Take, for example, z = [1,2]7 € Q and y = [2,1]T € Q.
Then,

ax+ (1 - a)y = [%;Z]

Hence,
flaz+(1—a)y)=2-a)1l+a)=2+a—a,

and

af(x)+(1-a)f(y) =2
If, for example, & = 1/2 € (0, 1), then

1 1 9 1 1

f (293 + 5!!) =7 §f(z) + if(y)’

which shows that f is not convex over (2. B
The above numerical example is an illustration of the following general result.

Proposition 21.1 A quadratic form f : @ - R Q C R", given by f(z) = zTQx,
QeRV™, Q= Q7 is convexon Q ifand only ifforallz,y € Q, (x —y)T Q(z —
y) 2 0. o

Proof The result follows from Theorem 21.2. Indeed, the function f(z) = T Qx
is convex if and only if for every a € (0,1), and every z,y € R" we have

flaz + (1 -a)y) <af(x)+ (1 -a)f(y),

or equivalently

af(z)+ (1 -a)f(y) - flaz+ (1 -a)y) 2 0.
Substituting for £ into the left-hand side of the above equation yields

azTQz + (1 - a)y" Qy — (az + (1 — 2)y) Qaz + (1 - a)y)
= azTQz +y"Qy - ay"Qy -’z Qz
- (20 -2a*)zTQy — (1 -2a+ o)y’ Qy
a(l —a)zTQx — 2a(1 — )z Qy + a(1 - &)y’ Qy

= o(l-o)(z-y)'Q(z -y).

Therefore, f is convex if and only if

a(l-a)(z-y)'Qx -y) >0,

which proves the result. B

Example 21.5 In the previous example, f(x) = 123, which can be written as
f(x) = €T Qx, where

1[0 1
Q:§[1 0]'




