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2. P(z) >0forallz € R";
3. P(z) = 0 if and only if z is feasible, that is, g, (z) <0,...,gp(z) < 0.
|

Clearly, for the above unconstrained problem to be a good approximation to the
original problem, the penalty function P must be appropriately chosen. The role of
the penalty function s to “penalize” points that are outside the feasible set. Therefore,
it is natural that the penalty function be defined in terms of the constraint functions
g1,---,9p- A possible choice for P is

P
P(z) =) g/ (@),
=1

where

0 if gs(z) <0

gl(x) if g,(a:) > 0.

We refer to the above penalty function as the absolute value penalty function, because

it is equal to ) |g;()|, where the summation is taken over all constraints that are
violated at . We illustrate this penalty function in the following example.

gi () = max(0, gi(x)) = {

Example 22.1 Letgq, 92 : R — Rbedefined by g;(z) = m—g, gg‘(x) = —(:'c—l— 1)3.
The feasible set defined by {z € R : g1(z) < 0,g2(z) < 0} is simply the interval
[—1, 2]. In this example, we have

0 ifx <2
+ — — =
gr(@) = max(0,0.(2)) { z —2 otherwise
+ _J 0 ifz > -1
9z () = max(0,(z)) = —(z +1)® otherwise,
and
’ T —2 ifx > 2
P(z) = gf (2) + g5 () =< 0 if ~1<z<2
—(z+1)% ifz< -1
Figure 22.1 provides a graphical illustration of g* for this example. |

The absolute value penalty function may not be differentiable at points x Whe're
gi(x) = 0, as is the case at the point z = 2 in Example 22.1 (notice, though, that in
Example 22.1, P is differentiable at z = —1). Therefore, in such cases we cannot
use techniques for optimization that involve derivatives. A form of the penalty.
function that is guaranteed to be differentiable is the so-called Courant-Beltrami
penalty function, given by

Pa) =3 (g @)’

2
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Figure 22.1 g% for Example 22.1

In the following discussion, we do not assume any particular form of the penalty
function P. We only assume that P satisfies conditions 1—3 given in Definition 22.1.

The penalty function method for solving constrained optimization problems in-
volves constructing and solving an associated unconstrained optimization problem,
and using the solution to the unconstrained problem as the solution to the original
constrained problem. Of course, the solution to the unconstrained problem (the
approximated solution) may not be exactly equal to the solution to the constrained
problem (the true solution). Whether or not the solution to the unconstrained problem
is a good approximation to the true solution depends on the penalty parameter v and
the penalty function P. We would expect that the larger the value of the penalty
parameter <y, the closer the approximated solution will be to the true solution, be-
cause points that violate the constraints are penalized more heavily. Ideally, in the
limit as y — o0, the penalty method should yield the true solution to the constrained
problem. In the remainder of this section, we analyze this property of the penalty
function method.

In our analysis of the penalty method, we adopt the following setting. Recall that
the original constrained optimization problem is:

minimize f(x)

subject to g1(x) <0
g92(x) <0
gp(z) <0.

Denote by z* a solution (global minimizer) to the above problem. Let P be a penalty
function for the problem. For each k = 1,2,..., let vx € R be a given positive
Constant. Define an associated function g(vx, -) : R* — R by

a(vk, @) = f(x) + yP(z).
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For each k, we can write the following associated unconstrained optimization prob-

lem:

minimize  g(V, ).

Denote by z(¥) a minimizer of q(vx, ). The following technical lemma describes
certain useful relationships between the constrained problem and the associated
unconstrained problems.

Lemma 22.2 Suppose {i} is a nondecreasing sequence, that is, for each k, we
have vy, < Yk+1. Then, for each k we have

1. q(Yrg1, 2*TD) > g(yg, z®))
2. P(zk+Dy < P(z(®)

3. f(E) > f(a®)

4. f(x*) > q(y,x®) > f(zk).

O

Proof. We first prove part 1. From the definition of ¢ and the fact that {7z} is an
increasing sequence, we have

(I(’Yk+1,a:(k+1)) = f(:l:(k+1)) +'yk+1P(m(k+1)) > f(w(k+1)) +,.Ykp(m(k+1)).
Now, because z(¥) is a minimizer of g(x, ),
g, @) = f(@®) + 1 P@®) < FtHD) 4y PzHD).

Combining the above, we get part 1.
We next prove part 2. Because 2(*) and 2(**1) minimize q(vk, =) and ¢(yk+1, Z),
respectively, we can write

F@®) + 3 P@®) < f@®) + 3 P@*HD),
F@*) + 3 PE®D) < f@®) + e P@D).

q(7ka w(k)) =
a(yrs1, ) =

Adding the above inequalities yields
wP(@®) + 71 P@FD) <y P(a®) + o P(®HD),
Rearranging, we get
(Vo1 — 1) P@*) < (g1 — ) P(&®).

We know by assumption that vx4+1 > Y&. If Yx41 > 7%, then we get P(z(F+1)) <
P(z®). If, on the other hand, vx+1 = 7k, then clearly 2(k+1) = £(*) and so
P(z®t1)) = P(x(®). Therefore, in either case, we arrive at part 2.

We now prove part 3. Because z(¥) is a minimizer of g(yx, x), we obtain

a(ye,2®) = f(@®) + 3 P®) < f@*HD) + 7 P(aHD).
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Therefore, .
@) 2 @) + 3 (P¥) ~ Pla*+))),

From part 2, we have P(z(¥)) — P(z(*+1)) > 0, and v, > 0 by assumption;
therefore, we get

F@*H) > f@®).
Finally, we now prove part 4. Because (¥ is a minimizer of q(k, ), we get
f&*) + wP@*) > q(v,2®) = f(&®)) + 3 P(z®).

Because x* is a minimizer for the constrained optimization problem, we have
P(x*) = 0. Therefore,

f@*) > f@®) + 3 Px®).

Because P(z(*)) > 0 and v > 0,

@) > gy, z®) > f(a®),

which completes the proof. | |

With the above lemma, we are now ready to prove the following theorem.

Theorem 22.2 Suppose the objective function f is continuous, and v, — oo as
k — co. Then, the limit of any convergent subsequence of the sequence {a:(k)} isa
solution to the constrained optimization problem. O

Proof. Suppose {x(™*)} is a convergent subsequence of the sequence {z(}. (See
Section 5.1 for a discussion of sequences and subsequences.) Let & be the limit
of {z(™*)}. By Lemma 22.2, the sequence {q(yk,z*))} is nondecreasing and
bounded above by f(x*). Therefore, the sequence {q(vx, z*¥))} has a limit ¢* =
limg_,00 g(, (¥)) such that ¢* < f(x*) (see Theorem 5.3). Because the function
[ is continuous, and f(z(™*)) < f(z*) by Lemma 22.2, we have

lim (ﬂ@0=f(£§wm“)=ﬂ@5fwﬂ

k—o0

Because the sequences {f(x(™*))} and {g(Ym,,z(™*))} both converge, the se-
quence {Ym, P(x(™))} = {q(Vim,, (™)) — f(2(™*))} also converges, with

lim v, P(x(™)) = ¢* — f(2).
k—o00

By Lemma 22.2, the sequence { P(z(*))} is nonincreasing and bounded from below
by 0. Therefore, { P(x(¥))} converges (again see Theorem 5.3), and hence so does
{P(z(™+))}. Because v,,, — 00, we conclude that

lim P(z(™)) =0.
k—o00




450 ALGORITHMS FOR CONSTRAINED OPTIMIZATION

By continuity of P, we have

0= lim P(z™))=P ( lim a:(mk)) = P(&),
k—o0 k—o00

and hence # is a feasible point. Because f(x*) > f(&) from above, we conclude
that & must be a solution to the constrained optimization problem. [ |

If we perform an infinite number of minimization runs, with the penalty parameter
~r — 00, then the above theorem ensures that the limit of any convergent subse-
quence is a minimizer z* to the original constrained optimization problem. There
is clearly a practical limitation in applying this theorem. It is certainly desirable
to find a minimizer to the original constrained optimization problem using a sin-
gle minimization run for the unconstrained problem that approximates the original
problem using a penalty function. In other words, we desire an exact solution to
the original constrained problem by solving the associated unconstrained problem
(minimize f(x) + yP(x)) with a finite v > 0. It turns out that indeed this can be
accomplished, in which case we say that the penalty function is exact. However, it
is necessary that exact penalty functions be nondifferentiable, as shown in [7], and
illustrated in the following example.

Example 22.2 Consider the problem

minimize f(z)
subject to z € [0,1],

where f(z) = 5 — 3z. Clearly, the solution is z* = 1.

Suppose we use the penalty method to solve the problem, with a penalty function
P that is differentiable at z* = 1. Then, P'(z*) = 0, because P(z) = 0 for all
z € [0,1]. Hence, if we let g = f + v P, then ¢'(z*) = f'(z*) + vP'(z*) # 0 for
all finite v > 0. Hence, * = 1 does not satisfy the first-order necessary condition
to be a local minimizer of g. Thus, P is not an exact penalty function. [ |

Here, we prove a result on the necessity of nondifferentiability of exact penalty
functions for a special class of problems.

Proposition 22.4 Consider the problem

minimize f(x)
subject to T € Q,
with Q C R™ convex. Suppose the minimizer x* lies on the boundary of 2, and there

exists a feasible direction d at ™ such that d'vy (x*) > 0. If P is an exact penalty
function, then P is not differentiable at T*. a

Proof. We use contraposition. Suppose P is differentiable at x*.  Then,
dTVP(x*) = 0, because P(x) = 0 for all z € Q. Hence, if we let g = f + 7P,

T
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theq dTVg(:L'*) > 0 for all finite v > 0, which implies that Vg(z*) # 0. Hence,
x* is not a local minimizer of g, and thus P is not an exact penalty function. [ |

Note that the result of the above proposition does not hold if we remove the
assumption that d7V f (z*) > 0. Indeed, consider a convex problem where
Vf(z*) = 0. Choose P to be differentiable. Clearly, in this case we have
Vg(xz*) = Vf(z*) + yVP(x*) = 0. The function P is therefore an exact penalty
function, although differentiable.

For further reading on the subject of optimization of nondifferentiable functions,
see, for example, [25]. The references [8] and [70] provide further discussions
on the penalty method, including nondifferentiable exact penalty functions. These
references also discuss exact penalty methods involving differentiable functions;

these methods go beyond the elementary type of penalty method introduced in this
chapter.

EXERCISES

22.1 Let A € R™*", m < n,rank A = m, and b € R™. Define Q = {x : Az =
b} and let ¢ € 2. Show that for any y € R",
[z + y] = 2o + Py,
where P =T — AT(AAT)-1 4.
Hint: Use Exercise 6.4 and Example 12.4.

22.2 Let f : R* — R be given by f(x) = 27Qz — x7¢c, where Q = QT > 0.
We wish to minimize f over {x : Az = b}, where A € R™*" m < n, and
rank A = m. Show that the projected steepest descent algorithm for this case takes

the form
k
k) = g _ (_99TPg® 1\ b g
g(k)TPQPg(k) ’

where
9" = Vi) = Qa® —¢,

and P =1, - AT(AAT)-1A.
22.3 Consider the problem
. 1. 9
minimize 3 |||
subject to Az =0,

where A € R™*™, m < n, and rank A = m. Show that if z(® ¢ {z : Az = b},
then the projected steepest descent algorithm converges to the solution in one step.




